四旋翼无人机飞机距离( 二 )


2.1 基于互补滤波的高度解算
定高控制需要获取无人机的高度信息,绝大多数情况下,飞控的高度信息是由飞控内部的气压计来提供的,气压计测量的是绝对高度,利用大气气压伴随高度的增加而降低的原理测量,测量公式:
所以气压计高度测量可以表示为:
即气压计所测高度等于实际高度加上测量误差高度 。
实际飞控板内计算气压计数据时,会采集多次数据求均值然后进行计算,但是单一的传感器所提供的信息似乎不能够满足实际飞行的要求,而且气压计有其难以忽视的缺陷:
(1)气压计测量时,噪声干扰很大,数据不够平滑;
(2)气压计所测数据会存在漂移现象;
(3)经实验证明,气压计测量受温度以及气流干扰严重,低温、强气流环境下,气压计均无法测得准确数值 。
加速度计也可以获取飞控的位置信息,飞控通过加速度计获取到当前的加速度以后,通过积分得到垂直速度信息,再积分即可获取高度信息,如下:
但是加速度计同样存在固有的缺陷问题,多次积分会使结果产生累积误差,且加速度计的瞬时测量值误差会比较大 。
显然,无法单独依靠气压计或者加速度计提供准确的高度信息反馈到实际地控制中,考虑通过其他传感器与气压计的数据进行数据融合处理,以期望得到良好精确的高度信息 。
互补滤波算法是通过将气压计于加速度计测量得到的高度信息按照权重进行融合,以此为基础结算高度信息,采用高通滤波器处理加速度细心,低通滤波器处理气压计信息,其中加速度计可以获取飞控的垂直方向上的加速度,经过积分可以化的垂直方向的速度信息,整个算法的核心思想是由地理坐标系下的加速度通过积分,来获得速度、位置信息;经过2次修正陈尚可利用的信息,第一次是李忠传感器计算修正系数产生加速度的偏差修正加速度,第二次是利用修正系数修正位置;最后可利用速度经过加速度修正,可利用的位置经过了加速度和位置修正,加速度的修正过程是由机体测量的加速度通过减去偏差,再转换到地理坐标系 。
气压计主要的作用就是计算一个校正系数来对加速度偏移量进行校正 。数据融合过程如图所示:
加速度计测量的是无人机的加速度,测量值是机体坐标系下的,所以需将加速度值利用旋转矩阵转换为地面参考坐标系下的加速度 。具体融合信息的实现过程如下:
(2)将加速度计测量的加速度通过旋转矩阵转换到地面参考坐标系下,转换之前注意需要先去除加速度计的偏移量,因为地理坐标系下 z 轴加速度包含重力加速度,所以需要将重力加速度补偿上去;
(3)计算气压计的校正系数,这个系数也就是需要用来校正加速度计的系数,具体公式为
(4)利用所求的气压计校正系数计算加速度计的偏移向量 。
(5)将加速度偏移向量转换回机体坐标系,将转换后的加速度积分,得到融合后的速度信息,再对速度信息积分,即可得到最终的高度估计值,最后将气压计矫正系数二次校正 。
采集飞行数据并通过 Matlab 软件仿真以后的结果如图所示,可见融合以后的高 度较加速度计以及气压计单独测的高度准确 。
2.2 基于互补滤波的姿态解算
从飞行原理可以看出,无人机飞行过程中,最终的控制要回到姿态控制上面,通过具体的欧拉角度调整,从而控制无人机的飞行姿态 。要完成无人机的e姿态控制,就需要采集到无人机当前的姿态,然后经过控制算法,将无人机当前姿态调整到期望的姿态,姿态采集主要依靠飞控的惯性测量单元IMU,姿态解算精确与否直接关联到无人机飞行位置精确与否 。
飞行过程中,陀螺仪测量无人机的角速度,具有高动态性能,将角速度对时间积分可以得到三个欧拉角角度,陀螺仪数据在积分过程中,会形成累计误差,累计误差随着时间增加不断变大,所以短时间内陀螺仪测量值比较可靠 。磁力计主要测量当前的磁场分布,即无人机与磁场之间的角度,这个角度即为偏航角,但是磁力计受周围磁场干扰严重,实际测量中误差较大 。加速度计之前已经介绍过,不再赘述 。
三种传感器再频域上特性互补,所以本文考虑采用互补滤波融合这三种传感器的数据,实际是利用加速度计与磁力计融合后补偿陀螺仪所测的姿态信息,提高测量精度和系统的动态性能 。
三种传感器的数据融合过程如图所示,陀螺仪经过高通滤波器,消除低频噪声,加速度计与磁力计经过低通滤波器,消除高频噪声 。