樟子松园林用途有哪些( 七 )


造成空气中含有过高二氧化硫的原因,是由于城市中高大的建筑物、密集的公用设施和纵横交错的街道所形成的特殊的下垫面,以及人们在日常生活中排放出大量的热量、废气、烟尘等污染物共同作用所产生的特殊气候条件 。当空气中二氧化硫浓度达到0.001%时,人就感到呼吸困难,不能持久工作;达到0.04%时,人的声门痉挛、窒息,就会迅速死亡 。而通过燃烧释放到大气中的二氧化硫,与大气中的水汽结合,并随雨水一起降落而形成酸雨(指pH<5.6的降雨) 。据浙江省环保局监察,1997年该省酸雨覆盖面积已达80%以上,酸雨率达63.3%,即平均每下三场雨就有两场是酸雨 。我国平时食用醋(有机酸)的pH为3,该省某地曾测到过pH为3.32的酸雨(无机酸),其酸度已接近食醋 。
很多园林树种可以吸收有害气体,1公顷的柳杉每月可吸收二氧化硫60千克,柑橘叶片吸收的二氧化硫比柳杉还多 。经对一些常见的园林树种的吸硫量测定,发现臭椿和夹竹桃不仅抗二氧化硫的能力强,并且吸收二氧化硫的能力也很强 。臭椿在二氧化硫污染情况下,叶片含硫量可达正常值的29.8倍,夹竹桃可达8倍 。其他如珊瑚树、紫薇、石榴、厚皮香、广玉兰、棕榈、胡颓子、银杏、桧柏、粗榧等也有较强的抗二氧化硫特性 。刺槐、女贞、泡桐、梧桐、大叶黄杨等抗氟和吸氟的能力都比较强 。另外,木槿、合欢、黄檗、杨树、紫荆、紫藤、紫穗槐等对氯气、氯化氢气体有很强的抗性 。紫薇可以吸收低浓度的汞 。大多数树种都能吸收臭氧,其中银杏、柳杉、樟树、海桐、青冈栎、女贞、夹竹桃、刺槐、悬铃木、连翘等净化臭氧的作用较大 。有些树木还能吸收氨、铅及其他有害气体 。因此,在可能造成二氧化硫和其他有害气体污染的地区,根据具体场合,选择抗性强的园林树种栽植,可以起到很好的“有害气体净化场”的效果(表) 。
表 园林树种对有害气体的抗性一览表
空气中的烟尘和工厂排放的粉尘也是污染环境的有害物质,这些微尘颗粒重量虽小,但它在大气中的总量却是惊人的 。据测定,1997年全国烟尘排放总量达1573万吨,其中工业烟尘为1265万吨;全国工业粉尘排放总量达1505万吨 。许多工业城市每年每平方千米平均降尘量为500吨左右,在某些工业十分集中的城市甚至高达1000吨以上 。在城市中每燃烧1吨煤,就要排放11千克烟尘 。由于工业原料的粉碎而产生的粉尘中还含有碳、铅等微粒 。城市上空飘浮着的微尘,以煤尘、烟尘和有毒气体微粒的影响较大 。因体积和重量的不等,它们在空中逗留的时间、飘浮的距离、沉降的速度也各不相同 。在微尘达到一定的密度和分布高度后,就会形成雾障 。雾障使城市上空的大气能见度降低,地面接受的太阳辐射强度减弱(特别是紫外线减少),一般情况下仅为原接受太阳辐射能量的3/5,工业发达城市还要低些 。城市日照持续时间也相应减少,如曾被誉为“雾都”的伦敦,其时市中心的日照时数仅为郊区的82% 。特别是冬季,因雾障分布较低,以煤为主要能源材料的城市天空呈灰黑色;逆温层的形成又不利于有害气体的扩散,易造成气象条件的反常(如阴、雨天增多,冬季变暖,降雨不正常等),严重时还会造成生物体的大量中毒、窒息死亡 。
园林树种的正确选择和应用可以吸滞、过滤空气中的微尘 。一方面由于树冠茂密,具有强大的减低风速的作用,促使气流中携带的大粒灰尘下降;另一方面由于树木叶片表面不平、多茸毛、分泌黏性油脂或汁液,能吸附空气中大量的飘尘 。蒙尘的树木经过雨水冲洗后,又能恢复其滞尘作用 。
树木叶面积的总和为树体占地面积的数十倍,1平方米树林有20~75平方米的过滤叶面积,因此树木吸滞烟尘的能力是很大的 。我国据对一般工业区的初步测定表明,空气中的微尘含量,绿化地区较非绿化地区减少10%~15% 。在树叶茂密时,林下空气的含尘量约比露天广场少20%~28%;即使是在树叶脱落的冬季,树冠也能减少空气含尘量约5%以上 。因此,在有园林树木的街道上,距地面1.5米(人的呼吸带)处的空气含尘量比没有绿化的地段低30%以上 。
云杉、松树、榆树、朴树、刺楸、银杏、榉树、杨树、柳树、悬铃木、梧桐、槐树、刺槐、楝树、臭椿、樟树、广玉兰、冬青、女贞、海桐、石楠、夹竹桃、珊瑚树、枸骨、黄杨、青冈栎、厚皮香、榕树等滞尘能力较强,每公顷云杉林每年可吸滞32吨微尘,松树林可滞尘36.4吨 。因此在尘土飞扬的公路两旁,以及在工矿区和居民区之间种植适宜的园林树种,充分发挥其空气天然过滤器的功能,对提高滞尘效果很有帮助 。抗烟尘能力较强的树种有:香榧、粗榧、楠木、桂花、栀子、木槿、重阳木、三角枫、五角枫、乌桕、皂荚、樱花、蜡梅、木绣球、麻栎等 。