按关键词阅读: 盒马鲜生 数据挖掘
而C2M模式,则以客户为中心,实现反向的“需求拉动式供应链”,厂商在进行客户画像绘制,需求调研预测等一系列前期工作后,再按照需求进行“柔性生产”,这能很好的避免产能过剩。

文章插图
而消费者画像应该聚焦哪些具体指标?这些指标又是怎样被挖掘出来的呢?
举个例子,如图所示,是一个基于数据挖掘和可视化技术的消费者画像数字大屏。其中聚焦了年龄、性别、城市、省份、会员等级等硬性指标,而这些指标都是由线下的“场”利用门店wifi、人脸识别、会员系统实现同步上传的。除了上述指标外,还能够通过大屏进行近一步的数据分析挖掘,例如会员同比增长数、销售占比、偏爱单品预测等。

文章插图
2. 货——选品、递送与复盘除了“人”以外,“货”也要通过数据互联实现线上线下的全链路打通。
而零售业围绕“货”的核心工作,可以按照时间顺序,大致分为生产前的选品、生产后的递送、再生产前的复盘三大环节。由于选品工作很大程度商取决于消费者画像,而消费者画像的刻画在前篇已经描述过了,此处就主要阐述“货”的递送、复盘。
就递送需求而言,可以通过搭建数据中台的方式,帮助零售商来统一指挥各个门店的仓储、库存、物流的调度。通过平台打通所有门店的仓储、库存、物流系统以及线上零售平台(天猫、京东等),并和线下门店做到“货”的打通。这样一来,商品可以直接在全渠道上架,会员体系在全渠道打通,从而改造现有的零售商、品牌商内部的所有系统,让大数据最大发挥应用。
就复盘而言,可以通过数据挖掘和可视化技术通过实时大屏展现产品销售状况,能够敏捷的对产品策略进行调整。如下图所示,零售商能够结合旗下品牌各季主推SKU产品,对品牌产品进行直观展示,包括品牌矩阵、品类销售占比、主推产品销售情况、产品销售排行榜。

文章插图
3. 场——线上线下“场”的交互过去,传统零售商主攻线下实体门店渠道,而从传统线下布局迁移到“线上+线下”后,对“场”的交互也提出了更高的要求。
就线上“场”的搭建而言,通过可视化技术将线下各实体门店与线上电商门店进行统一的数据整合进而赋能管理层级人员。如图所示,大屏能够展示全渠道的实时销量、金额、流量等,且能够同步显示当月指标完成率,方便管理层级人员通过数据实现产品战略的制定与迭代。

文章插图
除了利用数字化大屏对线上“场”进行搭建以外,零售商也应加强线下“场”的数字化进程,例如通过智能设备(试穿评估、热力动线等)采集顾客进店后的行为数据,进行针对性的店内导购。
四、结语最后,零售业在未来还有很长的路要走,新零售也不会是零售行业迭代进步的终点。虽然,我们不能预见未来的零售业态会以怎样的形式存在,但有一点是可以肯定的,即数据挖掘和可视化技术在助力零售业转型升级之路上会起着愈发重要的作用。
以上新零售数字大屏案例来自于袋鼠云
本文由 @小陈同学ing. 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。

稿源:(人人都是产品经理)
【傻大方】网址:http://www.shadafang.com/c/111J2FN2020.html
标题:拥抱|当新零售拥抱数据可视化,一个案例带你读懂数据可视化的价值( 二 )