忆阻器类脑芯片与人工智能( 八 )


[19] NAHMIAS M A, SHASTRI B J, TAIT A N, et al. A leaky integrate-and- fire laser neuron for ultrafast cognitive computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1800212.
[20] WRIGHT C D, LIU Y, KOHARY K I, et al. Arithmetic and biologically inspired computing using phase-change materials[J]. Advanced Materials, 2011, 23 (30): 3408- 3413.
[21] KUZUM D, JEYASINGH R G D, LEE B, et al. Nanoelectronic programmable synapses based on phase change materials for brain- inspired computing[J]. Nano Letters, 2012, 12(5): 2179-2186.
[22] TUMA T, PANTAZI A, GALLO M L, et al. Stochasticphase-change neurons[J]. Nature Nanotechnology, 2016, 11: 693-699.
[23] WONG HS P, LEE HY, YU S, et al. Metal-oxide RRAM [J]. Proceedings of the IEEE, 2012, 100(6): 1951-1970.
[24] JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4): 1297-1301.
[25] ALIBART F, PLEUTIN S, BICHLER O, et al. A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing[J]. Advanced Functional Materials, 2012, 22(3): 609-616.
[26] CHEN CL, KIM K, TRUONG Q, et al. A spiking neuron circuit based on a carbon nanotube transistor[J]. Nanotechnology, 2012, 23(27): 275202.
[27] GHOLIPOUR B, BASTOCK P, CRAIG C, et al. Amorphous metal- sulphide microfibers enable photonic synapses for brain- like computing[J]. Advanced Optional Materials, 2015, 3(5): 635-641.
[28] AGNUS G, ZHAO W, DERYCKE V, et al. Two-terminal carbon nanotube programmable devices for adaptive architectures[J]. Advanced Optional Materials, 2010, 22 (6): 702-706.
[29] CHENG Z, RIOS C, PERNICE W H P, et al. On- chip photonic synapse[J]. Science Advances, 2017, 3(9): e1700160.
[30] NOVOSELOV K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[31] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
[32] KIM F, HUANG J, COTE L J. Langmuir- Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043-1049.
[33] GREEN A A, HERSAM M C. Solution phase production of graphene with controlled thickness via density differentiation[J]. Nano Letters, 2009, 9(12): 4031-4036.
[34] GAO W, ALEMANYl L B, CI L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry, 2009, 1(5): 403-408.
[35] BERGER, C. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312 (5777): 1191-1196.
[36] KEDZIERSKI J, HSU P L, HEALEY P, et al. Epitaxial graphene transistors on SiC substrates[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 2078-2085.
[37] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
[38] LI X, CAI W, AN J, et al. Large-Area synthesis of HighQuality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[39] ZHAN, Z Y, SUN J, LIU L H, et al. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils[J]. Journal of Materials Chemistry C, 2015, 3(33): 8634–8641.
[40] LI X, CAI W, COLOMBO L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling [J]. NANO LETTERS, 2009, 9(12): 4268-4272.
[41] WANG H, YU G. Direct CVD graphene growth on semiconductors and dielectrics for Transfer-Free device fabrication[J]. Advanced Materials, 2016, 28(25): 4956-4975.
[42] SUN J, COLE M T, LINDVALL N, et al. Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes[J]. Applied Physics Letters, 2012, 100(2): 022102.
[43] BI H, SUN S, HUANG F, et al. Direct growth of fewlayer graphene films on SiO2 substrates and their photovoltaic applications[J]. Journal of Materials Chemistry, 2012, 22(2): 411-416.
[44] KATO T, HATAKEYAMA R. Direct growth of DopingDensity- Controlled hexagonal graphene on SiO2, substrate by Rapid- Heating plasma CVD[J]. ACS Nano, 2012, 6(10): 8508-8515.
[45] WEI D, LU Y, HAN C, et al. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices[J]. Angewandte Chemie International Edition, 2013, 52(52): 14121-14126. [46] DONG Y, XIE Y, XU C, et al. Transfer-free, lithographyfree, and micrometer- precision patterning of CVD graphene on SiO2 toward all- carbon electronics[J]. Applied Materials, 2018, 6(2): 026802.
[47] PENG Z, YAN Z, SUN Z, et al. Direct growth of bilayer graphene on SiO2, substrates by carbon diffusion through nickel[J]. ACS Nano, 2011, 5(10): 8241-8247.
[48] YAN Z, PENG Z, SUN Z, et al. Growth of bilayer graphene on insulating substrates[J]. ACS Nano, 2011, 5 (10): 8187-8192.
[49] SU C, LU A, WU C Y, et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition[J]. Nano Letters, 2011, 11(9): 3612-3616.
[50] LI Z, WU P, WANG C, et al. Low-temperature growth of graphene by chemical vapor deposition using solidand liquid carbon sources[J]. ACS NANO, 2011, 5(4): 3385-3390.