热管的工作原理是什么( 二 )


⑶按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜—水热管、碳钢 。水热管、铜钢复合—水热管、铝—丙酮热管、碳钢·荣热管、不锈钢.钠热管等等 。
⑷按结构形式区分可分为普通热管、分离式热管、毛纫泵回路热管、微型热管、平板热管、径向热管等 。
⑸按热管的功用划分可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等 。
热管吸液芯的工作原理是什么物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象 。从热传递的三种方式:辐射、对流、传导,其中热传导最快 。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导 。一般热管由管壳、吸液芯和端盖组成 。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发 。管壁有吸液芯,其由毛细多孔材料构成 。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端 。这种循环是快速进行的,热量可以被源源不断地传导开来 。
热管的基本工作
典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封 。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段 。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段 。如此循环不己,热量由热管的一端传至另—端 。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:
(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面;
(2)液体在蒸发段内的(液--汽)分界面上蒸发;
(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;
(4)蒸汽在冷凝段内的汽.液分界面上凝结:
(5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源:
(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段 。
热管的基本特性
热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性 。
(3)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力 。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量 。当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外) 。
(2)优良的等温性热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性 。
(3)热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题 。
(4)热流方向酌可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段 。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应器及其他装置 。
(5)热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热 。
(6)恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管备部分的温度亦随之变化 。但人们发展了另一种热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性 。