导数的几何意义(导数的定义及其几何意义)大家好,我是一名数学专业的本科生 。这一次,我们将讨论导数的定义及其几何意义,它与持久性的关系,以及函数的求导规则 。你知道导数的定义,几何意义,与持久性的关系,函数的求导法则吗?没关系,学霸是来帮你的 。
在谈论衍生品之前,我们先看两个例子:
直线①的速度取时间t0到t的时间价格,在此期间,质点从至此S0=f(t0)移动到s = f(t);(s-s0)/t-t0=f(t)-f(t0)/t-t0,质点的平均速度 。②瞬时速度的正切问题V = LIM((f(t))-(f(t0))/(t-t0)(t→t0)在曲线C和C上有一个点M,在点M之外的C上的一个点N取为割线MN 。当点N沿曲线C接近点M时,若各MN绕点M旋转并接近极限MT,则直线MT称为曲线C在点M处的切线 。
tan =(y-y0)/(x-x0)=(f(x)-f(x0))/(x-x0)
斜率k=lim (f(x)-f(x0))/(x-x0)(x→x0)
1.导数的定义
设函数y=f(x)定义在点x0的某个范畴内 。当自变量x在x0处获得增量△x(点x0+△x仍在邻域内)时,因变量相应获得增量△y = f(x0+△x)-f(x0);如果△x→0时△y与△x之比的极限存在,则称函数y=f(x)在点x0可导,这个极限称为函数y=f(x)在点x0的导数,命名为f & # 39(x0),即
你也可以记住
二、导数的几何意义
【导数的定义及其几何意义 导数的几何意义】曲线在点(x0,y0)的切线方程:
点(x0,y0)处曲线的法线方程:
注意:曲线的切线方程的斜率和曲线的法线方程的斜率是负倒数 。
第三,函数的可导性和持久性之间的关系
设函数y=f(x)在x点可导,即
存在 。我们从函数与极限和无穷小的关系中知道 。
其中是△x→0时的无穷小值,两边乘以△x得到上式 。
当△x→0,△y→0 。函数yy=f(x)在X点是连续的..因此,如果函数y=f(x)在点x可导,那么该函数在该点必须保持不变 。
第四,函数的求导法则
①函数的和、差、积、商的求导规则
呵呵,岔河红豆博客:(u v)' = u v '
记住:和差的导数分别求导,然后和差 。
产品:(uv)= u & # 39;v+ u v & # 39;,(Cu)& # 39;= C u & # 39(c是常数)
注:产品的导数是领先、领先和不领先加上领先和不领先(前者指产品中的之一因子,后者指产品中的第二因子) 。
商:(u/v)& # 39;=(u & # 39;v-u v & # 39;)/v 2 (v不等于0)
注:商的导数是分母(子分子,子分母)减去子导数后的平方 。
②反函数的求导法则
如果函数x=f洪都博客(y)是单调的,可导的和f & # 39在区间I;(x)≠0,那么它的反函数在反函数的区间内也是可导的,并且
记住:反函数的导数等于原函数导数的倒数 。
③复合函数的求导规则
若u=g(x)在点x可导,y=f(u)在点u=g(x)可导,则复合函数y=f[g(x)]在点x可导,其导数为
记住:复合函数的导数等于复合函数逐层求导,然后是乘积 。
例如(sin NX)& # 39;= n cos nx
④常用的导数公式
(1)(C)& # 39;=0
(2)(x^u)';= x^(u-1大学)
(三)(罪x)& # 39;= cos x
(4)(cos x)& # 39;=-sin x
(谭x)& # 39;= sec(^2) x
(6)(成本x)& # 39;=-csc(^2) x
(7)(第十节)& # 39;=秒x正切
(8)(CSC x)& # 39;=-csc x cot x
(9)(a^x)';=(a^x)在
(10)(e^x)';=e^x
(11)
(12)
(13)
(14)
(15)
(16)
别怕,学霸来帮你了 。这些人有一个赞助记忆的公式:
公式:
通常为零、断电、倒数,
指不变、正变盈余、变盈余、
截正方形,逐截,逆分数 。
公式的含义:
常数的导数为零 。
幂函数的导数是指数减一,原指数取为系数 。
对数函数的导数是倒数 。
指数的导数是常数,乘以ln a 。
函数从正弦变为余弦,又从余弦变为正弦 。
切线和余切的导数分离是割线的平方和余切的平方 。
正割和余割的导数分离是正割乘以正切,余割乘以余割 。
反三角函数的导数都是分数 。
第五,高阶导数
一般来说,函数y = f(x)y & # 39;= f & # 39(x)仍然是x的函数 。我们把y & # 39= f & # 39(x)的导数称为函数y=f(x)的二阶导数,记为y & # 39'或者
f & # 39(x)称为f(x)的一阶导数 。一阶导数的导数是二阶导数,二阶导数的导数是三阶导数 。
...通常,( n-1)阶导数的导数称为n阶导数 。
y & # 39,y & # 39',y & # 39'',y^(4) 。。。。。。y^(n)
以上内容纯属个人总结意见,不代表官方观点 。如果你想珍惜你的朋友,你可以点击珍惜 。如果你觉得我是对的,请喜欢我 。谢谢大家的支持!欢迎来到评论区 。
- 土匪猪肝 土匪猪肝是哪里的菜
- 土匪鸭 土匪鸭的做法窍门
- 历史上真实的长坂坡之战 长坂坡之战
- 王维最为出彩的六首诗 王维的诗有哪些
- 土豆炖排骨的做法 土豆炖排骨怎么做好吃
- 土豆炖肉的做法 土豆炖牛腩的做法
- 土豆泥 土豆泥的简单做法
- 【游戏世界】拳头游戏再次打开了进入德国柏林lec场馆的大门
- 原神宝藏的线索2在哪 原神宝藏的线索2完成攻略
- 我的世界月蚀魔瞳者道具攻略 我的世界月蚀魔瞳者道具用法