数据|新零售到底是什么?——深度剖析人、货、场( 二 )


3. 经营过程的智能化1)选址
拿盒马来举例,每家新店候选点,都做商业潜力的评估。
通过已开店的数据,结合新候选点周边的人口结构、竞争店、微观环境数据,细化到每个个体的逛街购物习惯与偏好,预测开店6个月后的客户数;甚至到每个小区的渗透率,目前可以达到80%-85%的准确率;后面会进一步预测销售额,再加入财务成本,就可以预测能否赢利,什么时候会赢利。
2)品类选择和优化
北京和上海的用户对商品的偏好不一样,上海的城区和郊区也不一样,文教区与商业区也不一样。
选品的好坏,直接影响到营收;因此,我们需要根据服务区域内消费者的偏好、消费趋势以及季节性因素,构建基于消费者需求预测的选品模型与系统;并且与渠道商对接,做到自动的选品与补货,为区域的消费者持续提供和更新最符合其需求的商品,选品在盒马与零售通业务都是非常重要的环节。
3)门店配送
新零售模式还有一个重要的特点是门店配送,这是很大的成本构成;在开店之初,就可以通过每个小区渗透率的预测,划定营收/配送成本最优的配送区域;并且在配送环节基于消费者的地点以及配送路径进行集单与路径规划的优化,提高单个快递员单位时间送货的数据,以减少配送成本。
四、人才知识结构机器学习:这是数据挖掘的通用能力,有能力利用海量数据,构建合适的机器学习模型,挖掘有价值的信息,并对未来做预测。
运筹学与机器优化:面向选址、选品等新零售经营优化问题,有能力使用运筹学算法,或者结合机器学习的机器优化算法来构建智能化算法。
时空数据挖掘:由于我们面向大量的时空数据,需要具备时空数据的知识,以及时空数据的分析方法。
零售行业分析:零售行业的许多方法论是成立的,需要有零售业的专业背景,与先进的数据技术结合起来,升级传统零售业的分析方法。
可视化:线下空间数据难以理解的特殊性,使得数据可视化对于理解数据是非常重要的。
五、数据与算法技术与挑战痛点:线下行为的数字化。
1. 数字化数据的基础是业务的数字化,互联网的优势是将用户的每个行为、商品的详细信息、交易及物流整个链路都做了完整的数字化;然而,线下的信息没有那么理想。
2. 消费者的可识别互联网最大的优势是对消费者完整路径的可识别,甚至可以细化到鼠标在某个业务上停留了多长的时间,而对线下行为的识别,就差很多。
3. 门店、商品、交易的数字化门店、商品、交易的数字化,需要借助于业务的力量,将线下的门店、商品上翻,并且通过无线支付沉淀交易信息;例如盒马做到线上线下同库存,门店无现金支付,可以做到与线上几乎同水平的数字化程度。
4. 数据化数字化对应于线上,仅仅是业务链路的打点信息,这些信息需要融合、挖掘成结构成的数据资产,才能发挥价值。
从整体架构上,是关于人、货、场的属性,以及他们的关系,大多数的逻辑是与线上数据的建设是一致的,不过由于线下数据的稀缺性和特殊性,数据挖掘的方法是不同的。
5. 用抽样的数据还原消费者完整的行为重点建设客流还原模型,从20%可识别的数据,结合消费者的行为规律,完整地重建出每类甚至每个消费者线下到店的信息,线上购买的行为,由此推导出线下准确的客流。
店内行为识别:之前我们对于线下行为识别的深度仅仅到达到店面,但是店内与商品的交互以及动线,是没有获取到的,这些数据对于品类规划、动线设计有非常重要的意义;目前我们正在结合高精度WIFI、视频、IoT等手段,做到消费者在店内无感知的轨迹以及行为识别,包括在货架前的停留时间,拿起、放下商品。
6. 智能化电商的智能化,90%在于个性化,使消费者以最小的决策成本获得他想要的商品;但是新零售的智能化,就需要深入到供应链,门店、前置仓、分级仓、渠道商重新进入整个商业链路,而线上在供应链端的需求、数据以及算法积累是非常薄弱的。
通过完整的消费者全链路的消费与偏好模型,在各个业务场景产生精准的消费者和商品颗粒度的需求预测。
结合运筹学以及机器学习,构建机器优化的算法,产生面向各个应用场景的智能化模型。
作者:熊绎;微信号:fox-xiongyi
本文由 @熊绎 原创发布于人人都是产品经理,未经许可,禁止转载
题图来自 Unsplash,基于 CC0 协议