按关键词阅读: 系统 保护 充电 IC 蓄电池 电路设计 翻译 外文
1、内蒙古工业大学毕业论文外文翻译光伏系统中蓄电池的充电保护IC电路设计1.引言太阳能作为一种取之不尽、用之不竭的能源越来越受到重视 。
太阳能发电已经在很多国家和地区开始普及 , 太阳能照明也已经在我国很多城市开始投入使用 。
作为太阳能照明的一个关键部分 , 蓄电池的充电以及保护显得尤为重要 。
由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠 , 在电池的整个寿命期间电压稳定且不需要维护等优点 , 所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用 。
采用适当的浮充电压 , 在正常使用(防止过放、过充、过流)时 , 免维护铅酸蓄电池的浮充寿命可达1216年 , 如果浮充电压偏差5%则使用 。
2、寿命缩短1/2 。
由此可见 , 充电方式对这类电池的使用寿命有着重大的影响 。
由于在光伏发电中 , 蓄电池无需经常维护 , 因此采用正确的充电方式并采用合理的保护方式 , 能有效延长蓄电池的使用寿命 。
传统的充电和保护IC是分立的 , 占用而积大并且外围电路复杂 。
目前 , 市场上还没有真正的将充电与保护功能集成于单一芯片 。
针对这个问题 , 设计一种集蓄电池充电和保护功能于一身的IC是十分必要的 。
2.系统设计与考虑系统主要包括两大部分:蓄电池充电模块和保护模块 。
这对于将蓄电池作为备用电源使用的场合具有重要意义 , 它既可以保证外部电源给蓄电池供电 , 又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护 , 将充电和保护功能 。
3、集于一身使得电路简化 , 并且减少宝贵的而积资源浪费 。
图1是此Ic在光伏发电系统中的具体应用 , 也是此设计的来源 。
免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命 , 影响蓄电池寿命的因素有充电速率、放电速率和浮充电压 。
某些厂家称如果有过充保护电路 , 充电率可以达到甚至超过2C(C为蓄电池的额定容量) , 但是电池厂商推荐的充电率是C/20C/3 。
电池的电压与温度有关 , 温度每升高1 , 单格电池电压下降4 mV , 也就是说电池的浮充电压有负的温度系数-4 mV/ 。
普通充电器在25处为最佳工作状态;在环境温度为0时充电不足;在45时可能因严重过充电缩短电池的使用寿命 。
要使得蓄电池延长工作寿命 , 对蓄电池的工作状态要有一定 。
4、的了解和分析 , 从而实现对蓄电池进行保护的目的 。
蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态 。
但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同 , 所以对蓄电池的过放电电流检测也要分别对待 。
当电池处于过充电状态的时间较长 , 则会严重降低电池的容量 , 缩短电池的寿命 。
当电池处于过放电状态的时间超过规定时间 , 则电池由于电池电压过低可能无法再充电使用 , 从而使得电池寿命降低 。
根据以上所述 , 充电方式对免维护铅酸蓄电池的寿命有很大影响 , 同时为了使电池始终处于良好的工作状态 , 蓄电池保护电路必须能够对电池的非正常工作状态进行检测 , 并作出动作以使电池能够从不正常的工作状态回到通常工作 。
5、状态 , 从而实现对电池的保护 。
3.单元模块设计3.1充电模块芯片的充电模块框图如图2所示 。
该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路 。
该模块内含有独立的限流放大器和电压控制电路 , 它可以控制芯片外驱动器 , 驱动器提供的输出电流为2030 mA , 可直接驱动外部串联的调整管 , 从而调整充电器的输出电压与电流 。
电压和电流检测比较器检测蓄电池的充电状态 , 并控制状态逻辑电路的输入信号 。
当电池电压或电流过低时 , 充电启动比较器控制充电 。
电器进入涓流充电状态 , 当驱动器截止时 , 该比较器还能输出20 mA左右 , 进入涓流充电电流 。
这样 , 当电池短路或反接时 , 充电器只能以小电流充 。
6、电 , 避免了因充电电流过大而损坏电池 。
此模块构成的充电电路充电过程分为二个充电状态:大电流恒流充电状态、高电压过充电状态和低电压恒压浮充状态 。
充电过程从大电流恒流充电状态开始 , 在这种状态下充电器输出恒定的充电电流 。
稿源:(未知)
【傻大方】网址:/a/2021/0822/0023897422.html
标题:外文|外文翻译光伏系统中蓄电池的充电保护IC电路设计