双工位四轴点胶机阀体各密封圈名称( 四 )


最后, 胶粘剂必须与生产中所采用的点胶方法相适应. 这就是说, 它必须有适当的粘滞性. 经过冷却贮存的胶粘剂, 必须在达到环境温度以后才使用. 以保证准确的点胶.纸将在后面讨论粘滞度与温度的关系)
固化特性:
固化特性与达到希望的粘结强度所需的固化时间和固化温度有关. 达到所希望的粘结强度的时间越短, 温度越低, 则粘胶剂越好.
表面安装用的胶粘剂必须在低温下具有短的固化温度, 而在固化之后, 则必须有适当的粘结度, 以便在波峰焊时将组件固定住. 如果粘结强度太大,则返工困难, 相反粘结度太小组件可能掉到焊料槽中.
胶粘剂的固化温度应足过低, 以防止PCB板翘曲和组件损坏. 换言之, 胶粘剂最好是低于基板的玻璃转变温度(对于FR-4型基片为120℃)下固化. 然而, 高于玻璃转变温度的很短固化时间一般也能接受. 固化后胶粘剂既不应该使强度增加太多, 也不应该使强度在波峰焊期间下降.
为了保证有足够高的生产率, 要求固化时间较短. 固化的另一个特性是固化期间的收缩量较小(使粘贴组件的应力最小).最后, 胶粘齐应防气, 因为放气会导致焊剂的截留, 从而造成严重的清洗问题. 胶粘剂的迅速固化也可能造空洞.
固化后的特性:
尽管胶粘剂在波峰焊之后会丧失其作用, 但需在随后的制造过程(如清洗和修理返工)中影响部件的可靠性. 胶粘剂固化后的重要特性之一是可返工能力, 为了保证可返工能力, 胶粘剂的玻璃转变温度相当低, 当固化的胶粘剂在返工期间受热变软(即达到胶沾剂的Tg). 对于已完全固化的胶粘剂, 为了提供可返工能力, Tg的使用范围75℃~95℃.
在返工期间, 组件的温度往往超过100℃. 因为为了熔化易熔的锡一铅焊料, 端接头必须达到高得多的温度(>183℃). 只要固化胶沾剂的Tg<100℃以及胶粘剂的用量不过分多. 可返工能力就不成问题.
可返工能力的另一个有用的标志是, 返工之后剪切断开线的部位,如果剪切线在于粘结体中图(A)便意味着在返工其间将焊膜或焊盘提起来. 另一方面, 对图(B)所示失效机理, 在基板和胶粘剂之间几乎没有任何结合力, 如果胶粘剂受到污染或固化不足,便可能发生这种情况.
因化后胶剂的另一些得要性包括非导电性, 抗湿性和非腐蚀性. 胶粘剂还应有适当的绝缘性质, 但在最终选择胶粘剂之前, 应检查一下在潮湿状态下的情况.
表面安装用胶粘剂
最常用的非导电胶粘剂是环氧树脂和丙烯酸类.
1) 通常环氧树指是以热的方式固化, 适用于所有不同的涂敷方式, 热因化胶粘剂的催化剂是环氧化合物.
2) 丙烯酸类胶粘剂.这种胶粘剂具有迅速固化的独特化学性质. 但固化机理不同环氧树脂.这种胶沾剂利用长波外线或加热实现固化. 丙烯酸类胶粘剂必须延伸超过组件使紫外光能引起聚化作用. 由于所有的胶粘剂不可能完全暴露在紫外光之下,所以在组件下方可能末固化的胶粘剂. 此外, 末固化在胶粘剂在焊接期间会造成放气而形成空洞可截留焊剂.
丙烯酸类胶粘剂的完全固化一般由U-V(紫外光)和加热来实现, 以保证固化, 同时也缩短固化时间.
丙烯酸类胶粘剂与环氧树脂胶粘剂有一个重大差别, 即大多数(但不是所有)丙烯酸类胶粘剂都是厌氧的即能在无空气的情况下固化). 因此防止自然固化, 它们不应放在密封的容器内, 为了避免在贮藏器内固化, 胶粘剂必须能“呼吸”.
压力和时间是点胶的重要参数 , 它们对胶点的大小及拖尾进行控制.拖尾还随胶粘剂的粘滞度而变化 , 改变压力便能改变胶点的大小.挂线或拖尾使胶粘剂的“尾巴”超过组件的基片表面而拖长到下一个部位 , 从而可能引起焊区上出现跳焊的严重问题.挂线现象可以由由对点胶系统作某些调整来减少.例如:减少电路板与喷嘴之间的距离 , 采用直径较大的喷嘴口和较低的气压 , 有助于减少发生挂线.若点胶采用的是加压方式(这是常见的情况) , 则粘滞度和限制流速的任何变化都会使压务下降 , 结果导致流速降低 , 从而改变胶点尺寸.
胶粘剂的粘滞度在形成挂线方面也起作用 , 例如 , 粘滞度较大的胶粘剂比粘滞度较小的胶粘剂更容易挂线.然而 , 粘滞度太低则可能引起胶量过大.由于粘滞度是随温度而变化的 , 所以 , 环境温度的变化可能对胶旦有显著的影响.根据资料报道:当环境温度仅变化5℃(15℃变化到20℃)点胶量变化几乎达 50%(从0.13克到0.19克).所有其它点胶变量 , 如喷嘴尺寸 , 压力 , 时间的影响也都相同.为了防止由于环境温度变化而引起的胶点变化 , 应当采用恒温外壳.