幂函数的图像和性质图表!!_| ̄|○( 二 )


幂函数的图像和性质

幂函数的图像和性质图表!!_| ̄|○

文章插图
幂函数是基本初等函数之一 。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数 。
例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数 。
幂函数的一般形式是,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时,定义域为(0,+∞) ),这时可表示为,其中m,n,k∈N*,且m,n互质 。特别,当n=1时为整数指数幂 。正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数 。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增 。
其余偶函数亦是如此) 。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0 。零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1) 。
它的图像不是直线 。
幂函数的性质及图像特点
幂函数的图像和性质图表!!_| ̄|○

文章插图
一、性质1、正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);2、负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数 。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增 。
其余偶函数亦是如此) 。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0 。3、零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1) 。它的图像不是直线 。二、特点对于α的所有非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果,q和p都是整数,则,如果q是奇数,函数的定义域是R;如果q是偶数,函数的定义域是[0,+∞) 。
当指数α是负整数时,设α=-k,则,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞) 。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R 。扩展资料:初等函数初等函数是由幂函数(power function)、指数函数(expo