超导有什么用 超导有哪些应用( 二 )


文章插图
图2 金属汞的电阻在4.2 K突然降为零


除了寻找更高临界温度的超导材料之外,超导研究的物理学家同时担任着另一项重要科学任务—— 从微观层面解释为什么电子能够在固体材料中 “畅行无阻” 。包括爱因斯坦、玻尔和费曼等在内的世界上许多顶级聪明的物理学家都曾试图完成这个任务,然而他们都失败了 。在超导发现46 年之后的1957 年,常规金属超导微观理论被美国三名物理学家成功建立,这个理论以他们的名字(巴丁、库珀、施里弗)命名为BCS理论 。


BCS理论认为,常规金属合金中的自由电子除了人们熟知的库仑排斥作用外,还可以间接地产生一种较弱的吸引相互作用 。因为固体材料中的原子总是在平衡位置附近不停地热振动,原子核和其内部电子构成带正电的原子实会对 “路过” 带负电的电子存在吸引相互作用,因此后一个路过的电子将 “感受” 到前一个路过的电子造成的 “印记”,即它们之间存在一种间接相互作用,其媒介就是周期排列的原子产生的热振动能量量子——声子 。如果两个电子运动方向相反(动量相反),那么它们各自与周围原子实的相互作用就可以等效为它们之间存在一种弱的吸引相互作用,就像冰面上两个舞者互相抛接球一样,这种作用力导致材料中的电子两两配对 。配对后的电子对又叫库珀对,如果所有库珀对在运动过程中保持步调一致,那么配对电子即便受到运动阻碍也会彼涨此消,使得整个配对的自由电子群体都可以保证能量损失为零,从而实现零电阻状态 。


尽管BCS理论如此美妙地用“电子配对、干活不累”的创意解决了常规金属合金超导机理问题,但其创新大胆的思想却迟迟难以被人们所接受,直到多年后被实验所证实才于1972 年被颁发诺贝尔物理学奖 。作为唯一获得两次诺贝尔物理学奖的巴丁,早在1956 年因发明了半导体晶体管而获奖,在半导体和超导体两大领域做出了巨大的科学贡献 。有了理论指引,更高临界温度的超导体似乎已经可以“按图索骥”,然而,兴奋的实验物理学家只在 Nb3Ge 合金中找到了23.2 K 的超导,历时60 余年的超导探索之路,如同乌龟踱步一样,路漫漫其修远(见图3) 。


何处是曙光?凝聚态理论物理学家再次无情地泼了一大瓢冷水——他们基于BCS理论框架计算出,所有的金属合金超导体临界温度存在一个40 K的理论上限,称作麦克米兰极限 。这是因为金属原子实热振动这个中间媒介的能量存在上限,要获得高于40 K的超导电性,就会导致原子构成的周期晶格最终融化 。40 K,离300 K 附近的室温似乎遥遥不可及 。但,这会是一个无法逾越的障碍吗?


超导有什么用 超导有哪些应用

文章插图
【超导有什么用 超导有哪些应用】图3 超导体发现年代及其临界温度,已更新到2020年10月 。


幸运的是,实验物理学家并没有因此放弃梦想,他们一直在努力 。直到今天,新的超导材料正在不断被人们所发现 。


研究表明,绝大部分非磁性金属单质在足够低的温度下都可以超导,这些单质炼成合金,临界温度将更高,它们统称为“金属合金超导体”;一些金属化合物中电子尽管显得“很笨重” (电子有效质量很大),也能实现超导,被归为 “重费米子超导体”;C60和碱金属的化合物,甚至一些有机材料,也是超导体,被划为“有机超导体”;更令人欣喜的是,许多往往被认为导电性能很差的金属氧化物(如钛氧化物、铌氧化物、铋氧化物、钌氧化物、钴氧化物等)也是超导体 。超导,几乎无处不在地存在于各种形式单质和化合物中!既然“条条大路通超导”,物理学家开始了更大胆的探索,他们在通常认为是绝缘体的铜氧化物陶瓷材料中寻找可能的超导电性 。


自1986 年开始,曙光终于破雾而出 。位于瑞士苏黎世的IBM公司的两名工程师柏诺兹和缪勒在La-Ba-Cu-O体系中发现可能存在35 K的超导电性 。尽管临界温度尚未突破40 K,但是35 K已经是当时所有超导体临界温度的新纪录,为此柏诺兹和缪勒获得了1987 年的诺贝尔物理学奖 。一场攀登超导巅峰之战由此拉开帷幕,其中不乏中国人和华人科学家的身影 。


1987年2 月,美国休斯顿大学的朱经武、吴茂昆研究组和中国科学院物理研究所的赵忠贤研究团队分别独立发现,在Y-Ba-Cu-O 体系中存在90 K 以上的临界温度,超导研究首次成功突破了液氮温区(液氮的沸点为77 K) 。采用较为廉价的液氮将极大地降低超导的应用成本,使得超导大规模应用和深入科学研究成为可能,赵忠贤研究团队也因此获得1989 年国家自然科学一等奖 。之后的十年内,超导临界温度记录以火箭般速度往上窜,目前世界上最高临界温度的超导体是Hg-Ba-Ca-Cu-O 体系(常压下135 K,高压下164 K),由朱经武研究小组于1994年创下(见图3) 。由于铜氧化物超导体临界温度远远突破了40 K的麦克米兰极限,被人们统称为“高温超导体”(这里的高温,实际上只是相对金属合金超导体较低的临界温度而言) 。