常见的七种排序算法解析
本文来自作者在GitChat(ID:GitChat_Club)上的精彩分享,CSDN独家合作发布。
01
选择排序
实现原理
首先从未排序序列中找到最小的元素,放置到排序序列的起始位置,然后从剩余的未排序序列中继续寻找最小元素,放置到已排序序列的末尾。所以称之为选择排序。
代码实现
案例分析
时间复杂度与空间复杂度
每次要找一遍最小值,最坏情况下找n次,这样的过程要执行n次,所以时间复杂度还是O(n^2)。空间复杂度是O(1)。
02
快速排序
实现原理
在数据集之中,选择一个元素作为”基准”(pivot)。
所有小于”基准”的元素,都移到”基准”的左边;所有大于”基准”的元素,都移到”基准”的右边。这个操作称为分区 (partition)。
操作,分区操作结束后,基准元素所处的位置就是最终排序后它的位置。
对”基准”左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。
代码实现
案例分析
时间复杂度与空间复杂度
快速排序也是一个不稳定排序,平均时间复杂度是O(nlogn)。空间复杂度是O(logn)。
03
冒泡排序
实现原理
依次比较相邻的两个元素,如果第一个元素大于第二个元素就交换它们的位置。这样比较一轮之后,最大的元素就会跑到队尾。然后对未排序的序列重复这个过程,最终转换成有序序列。
代码实现
案例分析
以数组 arr = [3 4 2 8 0] 为例说明,加粗的数字表示每次循环要比较的两个数字:
第一次外循环
( 3 4 2 8 0 ) → ( 3 4 2 8 0 ), 4 > 3 位置不变 ( 3 4 2 8 0 ) → (3 2 4 8 0 ), 4 > 2 交换位置 ( 3 2 4 8 0 ) → ( 3 2 4 8 0 ), 8 > 4 位置不变 ( 3 2 4 8 0 ) → ( 3 2 4 0 8 ), 8 > 0 交换位置
第二次外循环(除开最后一个元素8,对剩余的序列)
( 3 2 4 0 8 ) → ( 2 3 4 0 8 ), 3 > 2 交换位置 ( 2 3 4 0 8 ) → ( 2 3 4 0 8 ), 4 > 3 位置不变 ( 2 3 4 0 8 ) → ( 2 3 0 4 8 ), 4 > 0 交换位置
第三次外循环(除开已经排序好的最后两个元素,对剩余的循环,直到剩余的序列为 1)
( 2 3 0 4 8 ) → ( 2 3 0 4 8 ),3 > 2 位置不变 (2 3 0 4 8 ) → (2 0 3 4 8 ),3 > 0 交换位置
第四次外循环(最后一次)
( 2 0 3 4 8 ) → (0 2 3 4 8 ),2 > 0 交换位置
时间复杂度与空间复杂度
由于我们要重复执行n次冒泡,每次冒泡要执行n次比较(实际是1到n的等差数列,也就是(a1 + an) * n / 2),也就是 O(n^2)。 空间复杂度是O(1)。
04
插入排序
实现原理
认为第一个元素是排好序的,从第二个开始遍历。
拿出当前元素的值,从排好序的序列中从后往前找。
如果序列中的元素比当前元素大,就把它后移。直到找到一个小的。
把当前元素放在这个小的后面(后面的比当前大,它已经被后移了)。
代码实现
原理图解
案例1
案例2
时间复杂度与空间复杂度
因为要选择n次,而且插入时最坏要比较n次,所以时间复杂度同样是O(n^2)。空间复杂度是O(1)。
05
希尔排序
实现原理
先取一个正整数 d1(d1 < n),把全部记录分成 d1 个组,所有距离为 d1 的倍数的记录看成一组,然后在各组内进行插入排序
然后取 d2(d2 < d1)
重复上述分组和排序操作;直到取 di = 1(i >= 1) 位置,即所有记录成为一个组,最后对这个组进行插入排序。一般选 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
代码实现
案例分析
假设有数组 array = [80, 93, 60, 12, 42, 30, 68, 85, 10],首先取 d1 = 4,将数组分为 4 组,如下图中相同颜色代表一组:
然后分别对 4 个小组进行插入排序,排序后的结果为:
然后,取 d2 = 2,将原数组分为 2 小组,如下图:
然后分别对 2 个小组进行插入排序,排序后的结果为:
最后,取 d3 = 1,进行插入排序后得到最终结果:
时间复杂度与空间复杂度
希尔排序的时间复杂度受步长的影响,平均时间复杂度是O(n log2 n),空间复杂度是O(1)。
06
归并排序
实现原理
把 n 个记录看成 n 个长度为 l 的有序子表
进行两两归并使记录关键字有序,得到 n/2 个长度为 2 的有序子表
重复第 2 步直到所有记录归并成一个长度为 n 的有序表为止。
总而言之,归并排序就是使用递归,先分解数组为子数组,再合并数组。
代码实现
public static int[] mergeSort(int[] arr){
int[] temp =new int[arr.length];
internalMergeSort(arr, temp, 0, arr.length-1);
return temp;
}
private static void internalMergeSort(int[] a, int[] b, int left, int right){
//当left==right的时,已经不需要再划分了
if (left<right){
int middle = (left+right)/2;
internalMergeSort(a, b, left, middle); //左子数组
internalMergeSort(a, b, middle+1, right); //右子数组
mergeSortedArray(a, b, left, middle, right); //合并两个子数组
}
}
// 合并两个有序子序列 arr[left, ..., middle] 和 arr[middle+1, ..., right]。temp是辅助数组。
private static void mergeSortedArray(int arr[], int temp[], int left, int middle, int right){
int i=left;
int j=middle+1;
int k=0;
while ( i<=middle && j<=right){
if (arr[i] <=arr[j]){
temp[k++] = arr[i++];
}
else{
temp[k++] = arr[j++];
}
}
while (i <=middle){
temp[k++] = arr[i++];
}
while ( j<=right){
temp[k++] = arr[j++];
}
//把数据复制回原数组
for (i=0; i<k; ++i){
arr[left+i] = temp[i];
}
}
案例分析
案例1
以数组 array = [4 2 8 3 5 1 7 6] 为例,首先将数组分为长度为 2 的子数组,并使每个子数组有序:
[4 2] [8 3] [5 1] [7 6] ↓
[2 4] [3 8] [1 5] [6 7]
然后再两两合并:
[2 4 3 8] [1 5 6 7] ↓
[2 3 4 8] [1 5 6 7]
最后将两个子数组合并:
[2 3 4 8 1 5 6 7] ↓
[1 2 3 4 5 6 7 8]
案例2
时间复杂度与空间复杂度
在合并数组过程中,实际的操作是当前两个子数组的长度,即2m。又因为打散数组是二分的,最终循环执行数是logn。所以这个算法最终时间复杂度是O(nlogn),空间复杂度是O(1)。
07
堆排序
实现原理
堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作:
最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆
堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算
Parent(i) = floor((i-1)/2),i 的父节点下标
Left(i) = 2i + 1,i 的左子节点下标
Right(i) = 2(i + 1),i 的右子节点下标
代码实现
/**
* 堆排序
*/
public static int[] heapSort(int[] arr) {
// 将待排序的序列构建成一个大顶堆
for (int i = arr.length / 2; i >= 0; i--){
heapAdjust(arr, i, arr.length);
}
// 逐步将每个最大值的根节点与末尾元素交换,并且再调整二叉树,使其成为大顶堆
for (int i = arr.length - 1; i > 0; i--) {
swap(arr, 0, i); // 将堆顶记录和当前未经排序子序列的最后一个记录交换
heapAdjust(arr, 0, i); // 交换之后,需要重新检查堆是否符合大顶堆,不符合则要调整
}
return arr;
}
/**
* 构建堆的过程
* @param arr 需要排序的数组
* @param i 需要构建堆的根节点的序号
* @param n 数组的长度
*/
private static void heapAdjust(int[] arr, int i, int n) {
int child;
int father;
for (father = arr[i]; leftChild(i) < n; i = child) {
child = leftChild(i);
// 如果左子树小于右子树,则需要比较右子树和父节点
if (child != n - 1 && arr[child] < arr[child + 1]) {
child++; // 序号增1,指向右子树
}
// 如果父节点小于孩子结点,则需要交换
if (father < arr[child]) {
arr[i] = arr[child];
} else {
break; // 大顶堆结构未被破坏,不需要调整
}
}
arr[i] = father;
}
// 获取到左孩子结点
private static int leftChild(int i) {
return 2 * i + 1;
}
// 交换元素位置
private static void swap(int[] arr, int index1, int index2) {
int tmp = arr[index1];
arr[index1] = arr[index2];
arr[index2] = tmp;
}
案例分析
时间复杂度与空间复杂度
堆执行一次调整需要O(logn)的时间,在排序过程中需要遍历所有元素执行堆调整,所以最终时间复杂度是O(nlogn)。空间复杂度是O(1)。
耀升,Android架构师。一线互联网公司Android架构师,做过十余个项目,丰富的项目管理经验。热爱技术分享,活跃于CSDN和知乎。阅读原文查看交流实录。
- 别再傻傻把这些皮肤病当皮肤癌了
- “门口顶心煞,屋主有灾煞”,常见的六种风水煞气,千万要注意
- 六个最常见的高血压骗局,伤钱更伤身,千万别上当!
- 11种常见食物是“天然防癌药”
- “我可能瘦了!”减肥党常见的7大错觉,你中枪了吗?
- 【趣投吧分享】这几种外汇常见的下单类型你知道么
- 这种乡下常见的果实,别看长得奇怪,作用可大了!
- 健康过冬 这些常见病需提防
- 脑膜瘤复发了该怎么办?
- 医学图说医生,我怎么知道有没有得大肠癌?