傻大方


首页 > 知识库 > >

201|201x-201x学年高中数学第三章推理与证明章末高效整合北师大版选修


按关键词阅读: 选修 北师大 整合 高效 证明 推理 第三 高中数学 学年 201

1、章 末 高 效 整 合,知能整合提升,1合情推理 合情推理包括归纳推理和类比推理 2归纳推理 (1)概念:根据一类事物的部分对象具有某种性质 , 推出这类事物的所有对象都具有这种性质的推理叫做归纳推理 (2)特点:归纳是从特殊到一般的过程 (3)归纳推理的一般步骤: 通过观察个别情况发现某些相同性质 从已知的相同性质中推出一个明确表述的一般性命题(猜想,3类比推理 (1)概念:根据两类不同事物之间具有某些类似(或一致)性 , 推测其中一类事物具有与另一类事物类似(或相同)的性质的推理 , 叫类比推理 (2)类比推理的一般步骤: 找出两类事物之间的相似性或一致性 用一类事物的性质去推测另一类事物的性质 , 得出 。

2、一个明确的命题(猜想,4演绎推理 (1)概念:根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理 , 叫演绎推理 (2)特征:前提为真时 , 结论必然为真 5归纳推理和类比推理的特点与区别 类比推理和归纳推理的结论都是有待于证明的归纳推理是由特殊到一般的推理 , 类比推理是由个别到个别或一般到一般的推理,6反证法 (1)反证法不直接证明命题“若p , 则q” , 而且先肯定命题的条件p , 并否定命题的结论q , 即从原题的反设证出“既p又q”为假;从而根据排中律 , 两个互相矛盾的判断不能同假 , 必有一真 , 从而肯定命题“若p , 则q”为真,7反证法适用范围 反证法主要适用于以下三种情形: (1)要证的结论与条件之间的联系 。

3、不明显 , 直接由条件推出结论的线索不够清晰; (2)如果从正面证明 , 需要分成多种情形进行分类讨论 , 而从反面进行证明 , 只要研究一种或很少的几种情形 (3)直观判断显然成立的结论 , 否定性命题 , 唯一性命题 , 含“至多、至少”等字眼的存在性命题,热点考点例析,合情推理又包括归纳推理和类比推理 , 这两种推理得出的结论都不一定正确 , 有待证明;而演绎推理又叫逻辑推理 , 在大前提、小前提及推理过程都正确的情况下 , 得出的结论一定正确,合情推理和演绎推理,给出一个“三角形”的数表如下: 此表构成的规则是:第一行是0,1,2 , 999 , 以后下一行的数是上一行相邻两个数的和问:第四行的数中能被999整除的数是什么,解析:首先找 。

【201|201x-201x学年高中数学第三章推理与证明章末高效整合北师大版选修】4、出第四行数的构成规律 通过观察、分析 , 可以看出:第四行的任一个数都和第一行中相应的四个相邻的数有关 , 具体关系可以从上表看出:如果用an表示第四行的第n个数 , 那么an8n4,现在要找出an8n4999k的an ,显然k应是4的倍数 注意到第四行中最大的数是7 9809998 , 所以k4. 由此求出第四行中能被999整除的数是99943 996 ,它的第四行的第(3 9964)8499(项) ,即a4993 996,综合法是我们在已经储存了大量知识 , 积累了丰富经验的基础上所用的一种方法 , 其优点是叙述起来简洁、直观、条理清楚 , 综合法可使我们从已知的知识中进一步获得新知识 分析法是一种从未知到已知的逻辑 。

5、推理方法在探求问题时 , 它可以帮助我们构思 , 因而在一般分析问题时较多地采用分析法 , 只是找到思路后 , 往往用综合法加以叙述 , 正如恩格斯所说“没有分析就没有综合” , 在数学证明中不能把分析法与综合法绝对分开,综合法与分析法证题,因为bac ,故只需证(ac)2ac0 ,即证(2ac)(ac)0. 2acabc0 , ac0 ,(2ac)(ac)0成立 原命题成立,反证法是假设原命题不成立 , 经过正确的推理最后推出矛盾 , 因此说明假设错误 , 从而证明了原命题成立理论根据是互为逆否命题的两个命题是等价命题 , 即若pq成立 , 则qp成立 , 这里得出的矛盾可以与某个已知条件矛盾 , 可以是与某个事实、定理、公理相矛盾 , 也可以是自身 。

6、相矛盾反证法的使用范围:唯一性问题 , “至少”“至多”问题 , 问题本身是否定语气提出的问题,反证法,平面上有四个点 , 假设无三点共线 , 证明:以每三点为顶点的三角形不可能都是锐角三角形 证明:假设以每三点为顶点的四个三角形都是锐角 , 记这四个点为A , B , C , D.分点D在ABC之内或之外两种情况讨论 (1)如果点D在ABC之内(如图) , 根据假设以D为顶点的三个角都是锐角 , 其和小于270 , 这与一个圆周角等于360矛盾,2)如果点D在ABC之外(如图) , 根据假设BAD , B , BCD , D都小于90 , 这与四边形内角之和等于360矛盾 综上所述 , 原结论成立,3用反证法证明:若函数f(x)在区间a , b上是增函数 , 那么方 。


来源:(未知)

【学习资料】网址:/a/2021/0320/0021734635.html

标题:201|201x-201x学年高中数学第三章推理与证明章末高效整合北师大版选修


上一篇:最新|(最新整理)黄昌勇版土壤学名词解释

下一篇:模版工程重大危险源辨识与控制|模版工程重大危险源辨识与控制[知识资料]