按关键词阅读: 实模态 复模态 分析 固有频率 解释 若干问题
1、模态分析若干问题解释(阶 , 固有频率、复模态与实模态.)写这个帖子的目的有两点:1.解释模态分析过程中一些名词所代表的物理含义 。
2.为ABAQUS常见问题汇总3.0版的振动方面收集点问题 , 便于完成振动组的任务(请组长和组员 , 以及这方面高手们积极提问并回答) 。
在这 , 我暂行起抛砖引玉的作用 , 各位会员想到的问题或者能够回答的问题、以及能提同时能答的问题 , 请跟帖 。
各位版主对于提问(有价值 , 但不能重复)或者能回答的会员请加分 , 谢谢!0 t9 y;
M g) i8 k: Y$ ?. Y7 h: B/ B1.如何理解模态分析中的“阶” , 一个结构有1阶 , 2阶 , 3阶. , 怎么理解?;
Y! J* O! I7 O!。
2、y在理解“阶”之前 , 要先理解与“阶”紧密相连的名词“自由度” 。
自由度是指用于确定结构空间运动位置所需要的最小、独立的坐标个数 。
空间上的质点有三个自由度 , 分别为三个方向的平动自由度;空间上的刚体有六个自由度 , 分别为三个平动、三个转动自由度 。
一个连续体实际上有无穷多个自由度 , 有限元分析时将连续的无穷多个自由度问题离散成为离散的有限多个自由度的问题 , 此时 , 结构的自由度也就有限了 。
因此 , 可以这样理解 , 一个自由度对应一阶 , 连续体有无穷多阶 。
像弹簧-质量模型为单自由度系统 , 故对应的频率只有一阶 。
两自由度系统有两阶 。
一个具体的系统 , 每一阶对应着特定的频率、阻尼和模态振型 。
延伸问题:“同一个结构为什么各阶频率 。
【分析|模态分析若干问题解释阶,固有频率、复模态与实模态】3、、阻尼和模态振型又不相同?”这是因为虽然结构还是这个结构 , 但是参考各阶运动的结构上的质量和刚度都不相同 , 参考每阶响应的并不是结构所有的质量和刚度 , 而是这一阶“活跃的”有效质量(结构中的部分质量) , 所以各阶所对应的模态参数不完全相同 。
, $ 2 U, - J# x m;
Q2.如何理解无阻尼固有频率、有阻尼固有频率和固有频率?1 G. I! ;
O+ h4 W% C5 D# K通常在振动教材中都会定义无阻尼固有频率和有阻尼固有频率 , 无阻尼固有频率对应的是刚度/质量的平方根 , 有阻尼固有频率为无阻尼的固有频率乘以(1-阻尼比平方)的平方根 。
书本上这么定义完全是出于方便书写公式的目的 , 当然了也对应的一 。
4、定的物理意义 。
一般说来 , 无阻尼结构的频率便是无阻尼的固有频率 , 但现实中所说的固有频率 , 在没有特殊说明的情况下都是指有阻尼固有频率 , 因为现实中的结构都是有阻尼的 。
人们通常说的固有频率都是指有阻尼固有频率 。
另外 , 在有限元计算中 , 如果是实模态分析(不考虑阻尼) , 那么此时的求解出来的频率就是无阻尼的固有频率 , 如果是复模态分析(考虑非比例阻尼)得出来的固有频率是有阻尼固有频率 。
现实中的结构 , 除了含有阻尼机制的结构外 , 一般阻尼比都小于10% , 因此 , 阻尼对结构的固有频率的影响是非常小的 。
4 X6 D5 a1 Y7 V0 _2 U$ F3.复模态和实模态什么区别?7 ia% C% G, d6 s- d_ 对于 。
5、无阻尼的情况 , 由特征值求解产生的频率和留数为纯虚数 , 模态振型值为带符号(+或-)的实数值 , 且每阶模态振型的各个自由度之间 , 要么彼此完全同相位 , 要么彼此完全反相位 。
对于比例阻尼 , 此时阻尼与系统的质量和/或者刚度成比例 。
由特征值求解得出的频率为复数值 , 留数为纯虚数 , 模态振型值也为带符号(+或-)的实数值 。
且比例阻尼特征值求解得出的模态振型与无阻尼的情况相同 , 这是因为阻尼与系统的质量和/或刚度成比例 。
这样产生的模态称为“实模态” 。
因此 , 显然相同质量矩阵和刚度矩阵下 , 无阻尼和比例阻尼情况得出的模态振型完全相同 。
考虑第三种情况 , 此时阻尼不与系统的质量和/或者刚度成比例 , 即非比例阻尼 。
此时得出的频率、留数 。
6、和振型全为复数值 。
对于这种情况 , 模态振型不同于前面的两种情况 。
首先 , 模态振型是复数值 。
并且每阶模态的各个自由度之间的相对相位关系已不再是完全同相位或反相位了 。
这种情况下产生的模态称为“复模态” 。
这跟前面两种情况大不相同 。
系统阻尼与系统的质量和/或刚度不相关时 , 得出的模态就为复模态 , 此时的阻尼称为非比例阻尼 。
来源:(未知)
【学习资料】网址:/a/2021/0321/0021738700.html
标题:分析|模态分析若干问题解释阶,固有频率、复模态与实模态