傻大方


首页 > 知识库 > >

史上最全|【史上最全】2011中考数学真题解析48_一次函数与反比例函数的综合应用(含答案)( 三 )


按关键词阅读: 答案 应用 综合 反比例 函数 一次 48 题解 数学 中考 2011 史上最全


专题:数形结合 。
分析:根据题意知反比例函数和正比例函数相交于A、B两点 , 若要k2x, 只须y1y2 , 在图象上找到反比例函数图象在正比例函数图象上方x的取值范围解答:解:根据题意知:若k 。

21、2x, 则只须y1y2 , 又知反比例函数和正比例函数相交于A、B两点 , 从图象上可以看出当x1或0x1时y1y2 , 故选C点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义这里体现了数形结合的思想 , 做此类题一定要正确理解k的几何意义9. (2011广东湛江,12,3分)在同一坐标系中 , 正比例函数y=x与反比例函数的图象大致是()A、 B、 C、 D、考点:反比例函数的图象;一次函数的图象分析:根据正比例函数与反比例函数图象的性质进行选择即可解答:解:正比例函数y=x中 , k=10 , 此图象过一、三象限;反比例函数中 , k=20 , 此函数图象在一、三象限故选B点评:此题 。

22、主要考查了反比例函数的图象性质和一次函数的图象性质 , 要掌握它们的性质才能灵活解题10.(2011广西百色 , 10 , 4分)二次函数的图象如图 , 则反比例函数y=与一次函数y=bx+c的图象在同一坐标系内的图象大致是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:根据二次函数的图象 , 推出a0 , c0 , 顶点坐标都为正值 , 即可推出 , b0 , a0 , 根据反比例函数和一次函数的图形的性质推出反比例函数在第一、三象限 , 一次函数经过第一、三 , 四象限 , 所以图象大致为B项中的图象解答:解:二次函数图象的开口向下 , a0 , 顶点坐标都为正值 , 0 , b0 , a0 , 反比例函数在第一、三象限 , 一次函数经过第一、三、 。

23、四象限故选B点评:本题主要考查反比例函数的图象的性质二次函数图象的性质反比例函数图象的性质 , 关键在于通过二次函数图象推出a、b的取值范围11. (2011恩施州5,3分)一次函数y1=k1x+b和反比例函数y2=(k1k20)的图象如图所示 , 若y1y2 , 则x的取值范围是()A、2x0或x1B、2x1C、x2或x1D、x2或0x1考点:反比例函数与一次函数的交点问题 。
专题:数形结合 。
分析:根据图象可以知道一次函数y1=k1x+b和反比例函数y2=(k1k20)的图象的交点的横坐标 , 若y1y2 , 则根据图象可以确定x的取值范围解答:解:如图 , 依题意得一次函数y1=k1x+b和反比例函数y2=(k1k 。

【史上最全|【史上最全】2011中考数学真题解析48_一次函数与反比例函数的综合应用(含答案)】24、20)的图象的交点的横坐标分别为x=2或x=1 , 若y1y2 , 则y1的图象在y2的上面 , x的取值范围是2x0或x1故选A点评:此题主要考查了反比例函数与一次函数的图象的交点问题 , 解题的关键是利用数形结合的方法解决问题12.(2011年山东省东营市 , 10 , 3分)如图 , 直线l和双曲线交于A、B两点 , P是线段AB上的点(不与A、B重合) , 过点A、B、P分别向x轴作垂线 , 垂足分别为C、D、E , 连接OA、OB、0P , 设AOC的面积为S1、BOD的面积为S2、POE的面积为S3 , 则()A、S1S2S3 B、S1S2S3 C、S1=S2S3 D、S1=S2S3考点:反比例函数系数k的几何意义;反比例函数与一次 。

25、函数的交点问题专题:几何图形问题分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S= |k|解答:解:结合题意可得:AB都在双曲线y= 上 , 则有S1=S2;而AB之间 , 直线在双曲线上方;故S1=S2S3故选D点评:本题主要考查了反比例函数y=中k的几何意义 , 即过双曲线上任意一点引x轴、y轴垂线 , 所得矩形面积为|k| , 是经常考查的一个知识点;这里体现了数形结合的思想 , 做此类题一定要正确理解k的几何意义13. (2011陕西 , 8 , 3分)如图 , 过y轴正半轴上的任意一点P , 作x轴的平行线 , 分别与反比例函数的图象交于点A和点B , 若点C是x轴上任意一点 ,。

26、连接AC、BC , 则ABC的面积为 ( )A3 B4 C5 D6考点:反比例函数综合题 。
专题:计算题 。
分析:先设P(0 , b) , 由直线APBx轴 , 则A , B两点的纵坐标都为b , 而A , B分别在反比例函数的图象上 , 可得到A点坐标为( , b) , B点坐标为( , b) , 从而求出AB的长 , 然后根据三角形的面积公式计算即可解答:解:设P(0 , b) , 直线APBx轴 , A , B两点的纵坐标都为b , 而点A在反比例函数y=的图象上 , 当y=b , x= , 即A点坐标为( , b) , 又点B在反比例函数y=的图象上 , 当y=b , x= , 即B点坐标为( , b) , AB=()= , SABC=ABOP=b=3故选A点评:本题考查了点在函数图象上 , 点的横纵坐标满 。


来源:(未知)

【学习资料】网址:/a/2021/0324/0021765327.html

标题:史上最全|【史上最全】2011中考数学真题解析48_一次函数与反比例函数的综合应用(含答案)( 三 )


上一篇:病人|病人入院护理课件

下一篇:深入学习十九ooo会精神|深入学习十九ooo会精神 全面加强和保障改善民生