傻大方


首页 > 学习 >

天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?|天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?



按关键词阅读:

【天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?|天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?】1、天津市宝坻区宝坻四中2020-2021学年高一数学下学期期末综合训练试题三(含解析)第一部分(选择题 共40分)一、选择题共9小题 , 每小题4分 , 共36分在每小题列出的四个选项中 , 选出符合题目要求的一项1.已知复数,则( )A.B.C.D.【答案】A【解析】因为 , 所以 , 故选A.2.打靶3次 , 事件=“击中i发” , 其中.那么表示( ).A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确【答案】B【解析】所表示的含义是这三个事件中至少有一个发生 , 即可能击中1发、2发或3发 , 故选B.3.在下列各组向量中 , 互相垂直的是( )A., B., C., D., 【答案】A【分析】求出两向量的数量积 , 根 。

2、据两垂直向量的数量积关系进行判断【解析】若两个向量、垂直 , 则 , 对于选项A , 满足条件;对于选项B , 不满足条件;对于选项C , 不满足条件;对于选项D , 不满足条件;故选:A【点睛】本题主要垂直向量的数量积关系、向量数量积的坐标表示 , 属于基础题4.已知三条不同的直线 , 和两个不同的平面 , 下列四个命题中正确的为( )A. 若 , 则B. 若 , 则C. 若 , 则D. 若 , 则【答案】D【分析】根据直线和平面 , 平面和平面的位置关系 , 依次判断每个选项得到答案.【解析】A. 若 , 则 , 或相交 , 或异面 , A错误;B. 若 , 则或 , B错误;C. 若 , 则或相交 , C错误; D. 若 , 则 , D正确.故选:D.【点睛】本题考查了直线和平面 , 平面 。

3、和平面的位置关系 , 意在考查学生的推断能力和空间想象能力.5.已知在平行四边形中 , 点、分别是、的中点 , 如果 , 那么向量()A. B. C. D. 【答案】B【分析】作出图形 , 利用平面向量加法法则可求得结果.【解析】如下图所示:点、分别是、的中点 , .故选:B.【点睛】本题考查平面向量的基底分解 , 考查计算能力 , 属于基础题.6.齐王与田忌赛马 , 田忌上等马优于齐王的中等马 , 劣于齐王的上等马 , 田忌的中等马优于齐王的下等马 , 劣于齐王的中等马 , 田忌的下等马劣于齐王的下等马 , 现从双方的马匹中随机选一匹进行一场比赛 , 则田忌的马获胜的概率为( )A. B. C. D. 【答案】A【分析】先求出基本事件总数 , 再求出田忌 。

4、的马获胜包含的基本事件种数 , 由此能求出田忌的马获胜的概率.【解析】分别用A , B , C表示齐王的上、中、下等马 , 用a , b , c表示田忌的上、中、下等马 , 现从双方的马匹中随机选一匹进行一场比赛有Aa , Ab , Ac , Ba , Bb , Bc , Ca , Cb , Cc共9场比赛 , 其中田忌马获胜的有Ba , Ca , Cb共3场比赛 , 所以田忌马获胜的概率为.故选:A.【点睛】本题考查概率的求法 , 考查等可能事件概率计算公式等基础知识 , 考查运算求解能力 , 考查函数与方程思想 , 是基础题.7.已知某圆柱底面的半径为1 , 高为2 , 则该圆柱的表面积为( )A. B. C. D. 【答案】C【分析】根据圆柱表面积的计算公式直接求解即可.【解析】解:因 。

5、为圆柱的底面半径为1 , 高为2 , 所以圆柱的表面积.故选:C.【点睛】本题考查了圆柱表面积的求法,属基础题.8. 已知向量 , 满足|1 , |2 , 且与的夹角为120 , 则( )A. B. C. D. 【答案】D【分析】先计算 , 然后将进行平方 , 可得结果.【解析】由题意可得: 则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算 , 属基础题 。
9.如图 , 在底面为正方形 , 侧棱垂直于底面的四棱柱中 , 则异面直线与所成角的余弦值为( )A.B.C.D.【答案】D 第二部分(非选择题 共84分)二、填空题共6小题 , 每小题4分 , 共24分10.复数所对应的点在第______象限.【答案】二【分析】先求出复数 , 即可判断 。

6、对应点所在象限.【解析】 , 复数所对应的点的坐标为 , 在第二象限.故答案为:二.11. 一组数据的分位数是______.【答案】11【解析】将原数据按从小到大的顺序排成一列:,由于,故该组数据的分位数是.12. 已知向量 , 的夹角为 , 则________.【答案】【分析】由 , 结合平面向量数量积及模的坐标表示即可得解.【解析】因为 , 所以.故答案为:.【点睛】本题考查了平面向量数量积的应用 , 考查了运算求解能力 。
属于基础题.13. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科 。


稿源:(未知)

【傻大方】网址:/a/2021/0812/0023646225.html

标题:天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?|天津市宝坻区宝坻四中2020?2021学年高一数学下学期期末综合训练试题三?含解析?


上一篇:时代|区新时代文明实践中心办公室关于号召广大志愿者积极有序参与全区疫情防控志愿服务的倡议书

下一篇:2021|2021年最新优秀警校大学生个人自我鉴定