如果不是搞数学科研领域或从事有关数学专业的人,大多都会觉得数学在日常生活中并没有太多的直观的实用价值 。可能多数人会觉得平时的消费购物只需要 100 以内的加减法就足够了,至于微积分、导数、圆锥曲线、拉格朗日中值定理……对于大多数人来说实用性并不大 。这句话本没有问题,当一个人从事与数学毫无关联的工作时,那些数学定理与数学证明就会渐渐被遗忘 。
文章插图
然而,数学作为基础学科,作为中考、高考的三大主科之一,学子在数学领域经历十年寒窗苦读的目的究竟是什么?作为一个数学爱好者,我所追求的不仅仅是教材上的数学定理与数学证明,而是尽可能地去探究每一个公式定理背后所隐藏的逻辑关系,将数学真正内化成为属于自己的思维 。随着这种思维的形成,就会慢慢发现,在生活中,太多太多的科技成就,比如当今社会比较热门的机械自动化生产、人工智能等领域都映射着数学的影子,展现着数学的价值 。
所以,当把数学思维真正内化成为自己的思维习惯的时候,你的思考问题的方式及处理问题的方法就会变得不一样,全面而缜密 。而在学习、工作和生活中,这种思维方式发挥着举足轻重的作用 。即使是过了10年,20年,30年……公式定理会有遗忘,但这种经历数学学习而不断提炼总结而留下来的思维方式会使你终身受益,这便是数学核心素养最终的体现 。它会使你面对困难的时候,能够多角度地看待并理性的分析 。
文章插图
【将数学内化成为自己的思维】在小学、初中以至高中阶段,求解数学题目往往有唯一正确的答案 。但当把数学真正内化成为自己思维,具有足够思想深度的时候,对于数学建模的求解却没有唯一答案 。对于同一个问题可以建立多种不同的数学模型,它并没有绝对的正确与错误之分,此时,实践就作为了评价模型优劣的唯一标准 。
文章插图
▲ 托马斯·罗伯特·马尔萨斯, 他的《人口学原理》影响深远 (图自维基)
比如:在对人口预报问题进行建模分析的时候,可以建立马尔萨斯人口模型 。
假设人口增长率 r 是常数 。记时刻 t=0 时人口数为 x0,时刻 t 的人口为 x(t),可视为连续、可微函数,t 到 t+△t 时间段内人口的增量为
文章插图
x(t) 满足微分方程:
文章插图
解微分方程(1)可得(2):
文章插图
文章插图
查看上图,这表明 t趋于∞ 时,x(t)也趋于∞(r>0),此模型说明人口将以指数规律无限增长,而实际上,随着人口的增加,自然资源、环境条件等因素对因素对人口增长的限制作用越来越显著 。
而 logistic 模型 就可以对指数增长模型关于人口净增长率是常数的假设进行完善 。
假定 r(x)=r-sx. s>0(线性函数), r 为固有增长率,自然增长资源和环境条件年容纳的最大人口容量为 xm 。当 x=xm 时,增长率应为 0,即
文章插图
于是
文章插图
代入
文章插图
得
文章插图
将(3)式代入(1)式可得模型(4):
文章插图
解方程(4)得
文章插图
由此还可以作出 x-t 曲线,由图像可看出人口数随时间的变化规律 。
文章插图
- 数学与艺术的交集——分形之美
- Chaos 混沌世界——无序中的数学之美
- 从某个意义上来讲,数学是一种伟大的语言艺术,数学也是诗歌
- 展示数学美丽和力量的11个方程式,你最喜欢哪一个?
- 调和级数的几个有趣应用及一个著名悬而未解的数学问题
- 数学——保障信息传输安全的核心技术
- 拨动一代代数学家心弦的圆周与直径之比——圆周率发展简史
- 拉马努金和哈代:两位数学巨匠的惺惺相惜
- 自然是一本数学语言的书?应用数学与纯粹数学的区别
- 欧氏几何是唯一宇宙空间表现形式?三位数学家和他们的几何新世界