按关键词阅读: 大全 方法 解题 数学 应用题 小学
7、(天)答略 。
所以 , 乙单独做可以完成的时间是:综合算式:=6(天)答略 。
以完成?(适于六年级程度)解:甲队独做3天 , 乙队独做5天所完成的工作量 , 相当于甲乙两队合做3天 , 乙队再独做2天所完成的工作量 。
这时完成了全工程的:乙队单独做完成的时间是:答略 。
*例8加工一批零件 , 甲独做需要3天完成 , 乙独做需要4天完成 。
两人同时加工完成任务时 , 甲比乙多做24个 。
这批零件有多少个?(适于六年级程度)解:解这道题的关键是 , 求出24个零件相当于零件总数的几分之几 。
完成任务时甲比乙多做:综合算式:答略 。
*例9 一项工程 , 甲单独做20天完成 , 乙单独做30天完成 。
甲、乙合做了数天后 , 乙因事请假 , 甲继续做 , 从开工到完成任务 。
8、共用了14天 。
乙请假几天?(适于六年级程度)解:根据“甲单独做20天完成”和“从开工到完成任务共用了14天” , 可知甲做了全工程的:乙做了全工程的:乙请假的天数是:14-9=5(天)综合算式:答略 。
*例10 一项工程 , 乙队单独做需要15天完成 。
甲、乙两队合做 , 比乙队单独做可提前6天完成 。
如果甲、乙两队合做5天后 , 再由甲队单独做 , 甲队还需要多少天才能完成?(适于六年级程度)解:设这项工程为1 , 则乙队每天做:两队合做时每天做:甲队每天做:两队合做5天后剩下的工作量是:甲队做剩的工作还需要的时间是:综合算式:答略 。
(三)用解工程问题的方法解其他类型的应用题例1 甲、乙两地相距487千米 。
李华驾驶摩托车 。
9、从甲地到乙地 , 需要1小时;王明骑自行车从乙地到甲地需要3小时 。
照这样的速度 , 两人分别从两地同时相向出发 , 经过几小时在途中相遇?一般解法:(适于四年级程度)用解工程问题的方法解:(适于六年级程度)把全程看作1 。
李华驾驶摩托车从甲地到乙地需要1小时 , 李华的速度就是1;王明骑自行车从乙地到甲地需要3小时 , 王明每1小时要行全程的例2 某学校食堂购进一车煤 , 原计划烧60天 。
由于改进了炉灶的构造 , 实际每天比原来少烧10千克 , 这样这车煤烧了70天 。
这车煤重多少千克?*一般解法:(适于四年级程度)1060(70-60)70=4200(千克)答:这车煤重4200千克 。
用解工程问题的方法解:(适于六年级程度)答略 。
10、 。
一般解法:(适于六年级程度)答略 。
用解工程问题的方法解:(适于六年级程度)如果把这批零件的总数作为一项“工程” , 以1表示 , 则这个工厂计划因此 , 实际需要的天数是:答略 。
(四)用份数法解工程问题例1 一项工程 , 甲队单独做9天完成 , 乙队单独做18天完成 。
甲、乙两队合做4天后 , 剩下的任务由乙队单独做 。
乙队还需要几天才能完成?(适于六年级程度)解:把整个工程的工作量平均分成918=162(份)甲队每天可以完成:1629=18(份)乙队每天可以完成:16218=9(份)甲、乙两队合做每天共完成:18+9=27(份)两队4天共完成:274=108(份)两队合做4天后 , 剩下的工程是:162-108=54( 。
11、份)剩下的任务由乙队单独做 , 需要的天数是:549=6(天)综合算式:918-(91818+9189)49=162-1089=6(天)答略 。
例2 一项工程 , 甲队单独做16天完成 , 乙队单独做20天完成 。
甲队先做7天 , 然后由甲、乙两队合做 。
甲、乙两队合做还要多少天才能完成?(适于六年级程度)解:把这项工程的总工作量看做1620份 , 则甲队每天做20份 , 乙队每天做16份 。
甲队先做7天 , 完成的工作量是:207=140(份)甲队做7天后 , 剩下的工作量是:1620-140=180(份)甲、乙两队合做 , 一天可以完成:20+16=36(份)甲、乙两队合做还需要的天数是:18036=5(天)答略 。
例3 一个水池装有 。
12、进、出水管各一个 。
单开进水管10分钟可将空池注满 , 单开出水管12分钟可将满池水放完 。
若两管齐开多少分钟可将空池注满?(适于六年级程度)解:把注满全池水所用的时间看作1012份 , 当进水管进12份的水量时 , 出水管可放出10份的水量 , 进出水相差的水量是:12-10=2(份)甲、乙两管齐开注满水池所用的时间是:10122=60(分钟)答:若两管齐开60分钟可将空池注满 。
(五)根据时间差解工程问题例1 师、徒二人共同加工一批零件 , 需要4小时完成 。
来源:(未知)
【学习资料】网址:/a/2021/0126/0021177032.html
标题:小学|小学数学应用题解题方法大全( 二 )